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Abstract

This paper investigates the stability of thin condensate film flowing down on the inner surface of a rotating vertical cylinder by means of
long wave perturbation method in a two-step procedure. In the first step, the normal mode method is used to characterize the linear behav-
ior. In the second step, an elaborated nonlinear film flowmodel is solved by using the method of multiple scales to characterize flow behav-
ior at various states of sub-critical stability, sub-critical instability, supercritical stability, and supercritical explosion. The procedure
follows the previous research [C.I. Chen, C.K. Chen, Y.T. Yang, Int. J. Heat Mass Transfer 47 (2004) 1937–1951] which concerns with
the thin condensate falling film on the outer surface of a rotating vertical cylinder. The modeling results indicate that by increasing the
rotation speed, X, and the radius of cylinder, R, the condensate film becomes more stable, which is totally opposite to the previous study.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability problem of fluid film flowing down a verti-
cal or inclined plate is commonly found in many engineer-
ing applications, such as heat exchangers, condensers,
nuclear reactors. In practice, the condensate film flow easily
forms waves, ripples or some other time-dependent phe-
nomena. The waves, propagating at the film surface, in-
crease the interfacial transfers. The further application to
the stability analysis involves the coating of a moving solid
substrate by a liquid layer.

The theory of laminar film condensation flow induced
by gravity was first developed by Nusselt [2], but the stabil-
ity problem of condensate falling flow had never been
investigated until 1970s. Bankoff [3] used the long-wave
perturbation method to study the linear instability problem
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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of the film condensate flow. Without considering the tem-
perature disturbance, the result showed that film condensa-
tion on a vertical wall is always unstable. Ünsal and
Thomas [4] modified the kinematic condition by using the
interfacial energy balance equation, and found the finite
critical Reynolds number for the vertical wall. Essentially,
the linear stability analysis can only be applied to study the
cases of infinitesimal disturbances. When disturbance
grows to be of a finite value, linear stability theory becomes
invalid.

Extensive studies on the hydrodynamic stability prob-
lems regarding the condensate films flowing down a vertical
wall or cylindrical surface have already been investigated
by several researchers. Hung et al. [5] investigated the
weakly nonlinear stability analysis of a condensate film
flowing down the outer surface of vertical cylinder. They
showed that supercritical stability in the linearly unstable
region and sub-critical instability in the linearly stable
region can co-exist. Du and Wang [6] studied the trans-
port phenomena for flow film condensation in vertical
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Nomenclature

Cp specific heat of fluid
d complex wave celerity = dr + idi
g gravitational acceleration
h* film thickness
h�0 local base flow film thickness
hfg latent heat
K thermal conductivity of the fluid
Nd dimensionless parameter = (1 � b)n2/bPr2

p* fluid pressure
p�g vapor pressure
Pe local Peclect number = PrRe

Pr Prandtl number = qmCp/K
R* radius of cylinder
Re Reynolds number = u�0h

�
0=m

Ro Rotation number = X�h�0=u
�
0

r*,z* coordinates transverse to and along the cylinder
surface

S* surface tension of the fluid
t* time
T* fluid temperature
T �
s vapor saturation temperature

T �
w wall temperature

u�0 reference velocity = gh�20 =4mC
u*, v*, w* velocities along r*-, h*- and z*-directions,

respectively

Greek symbols

a dimensionless wave number
b density ratio = qg/q
e infinitesimal parameter
n Jakob number = CpðT �

s � T �
wÞ=hfg

g dimensionless perturbed film thickness
h dimensionless temperature
k perturbed wave length
l fluid dynamic viscosity
m fluid kinematic viscosity
q fluid density
qg vapor density
X* constant angular velocity
u stream function

Superscripts
* dimensional quantities
0

differentiation with respect to h

Subscripts

t, r, z partial differentiation with respect to the sub-
script

0, 1, 2, . . . expansion order of the long wave
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mini-tube. Miyara et al. [7] investigated the condensation
heat transfer and flow pattern inside a herringbone-type
micro-fin tube. Furthermore, Miyara [8] studied the wave
evolution and heat transfer behavior of a wavy condensate
film down a vertical wall by a finite difference. The results
showed that a circulation flow occurs in the large wave and
it affects the temperature field. The heat transfer is
enhanced by space-time film thickness variation and con-
vection effects. Usha and Uma [9] considered the weakly
nonlinear problem of condensate/evaporating power-law
liquid film down an inclined plane. They [10] further con-
ducted the research about interfacial phase change effects
on the stability characteristics of thin viscoelastic liquid
film down a vertical wall.

Condensate films developed on the vertical cylinders
have received a reasonable amount of attention in the liter-
atures, but how condensate films affected by the rotation
have not been fully explored. The authors previously stud-
ied the thin condensate film falling on the outer surface of a
rotating vertical cylinder [1]. In this paper, the falling con-
densate film inside the rotating vertical is reexamined to
show the difference between these two cases.

2. Mathematical modeling

In this study, the axisymmetric flow of an incompress-
ible, condensate liquid on the inner surface of a vertical
cylinder which rotates with a constant velocity X* is consid-
ered. The asterisk represents that this physical parameter is
a dimensional quantity. The appropriate physical configu-
ration is shown schematically in Fig. 1. In this case, all
associated physical properties and the rate of film flow
are assumed to be constant (i.e. time-invariant). Cylindrical
polar coordinates (r*, h*, z*) are used, where r* denotes the
radial direction, h* denotes the circumferential direction,
and z* denotes the axial direction. The liquid-air interface
is located at r* = R* � h*(z*,t*), where R* is the cylinder
radius and h* is the film thickness. The equations of
motion and continuity for axisymmetric flow can be
expressed as
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Fig. 1. Schematic diagram of a thin condensate film flow traveling down
along the inner surface of a rotating vertical cylinder.
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where T*, q, p*, l, Cp and K are the fluid temperature,
density, pressure, dynamic viscosity, specific heat and the
thermal conductivity of the fluid, respectively.

For simplification, it is assumed that the fluid film flow-
ing down the cylinder surface is very thin. In view of this, it
is reasonable to assume that the tangential velocity is a
constant throughout the radial direction in the thin film,
i.e. v* = R*X*.

The boundary conditions on the inner wall of the cylin-
der at r* = R* are given as

u� ¼ 0; w� ¼ 0; T � ¼ T �
w. ð5Þ

The boundary conditions at the free surface r* = R* � h*

are based on the results given by Edwards et al. [11].
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The kinematic condition that the flow cannot travel across
a free surface can be described as
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where T �
s is vapor saturation temperature, T �

w is wall tem-
perature, p�g is the vapor pressure, S

* is the surface tension
and hfg is the latent heat of phase change.

By introducing the stream function, u*, into dimen-
sional velocity components, the governing equation and
boundary condition become
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It is customarily to define flow associated dimensionless
quantities as
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where h�0 is the constant film thickness of local base flow, u�0
is the reference velocity, g is the gravitational acceleration,
Pr is the Prandtl number, Pe is the Peclect number, Re is
the Reynolds number, R is the dimensionless radius of
the cylinder, u is dimensionless stream function, a is the
dimensionless wave number, n is the Jokob number, b is
density ratio, S is dimensionless surface tension and k is
the wavelength.

In order to investigate the effect of angular velocity, X*,
on the stability of the flow field, the dimensionless Rotation
number, is introduced

Ro ¼ X�h�0
u�0

. ð12Þ

u�0 can be expressed as

u�0 ¼
gh�20
4mC

; ð13Þ

where C ¼ ½2ðR� 1Þ2 lnðR�1
R Þ þ ð2R� 1Þ��1.

Assuming that a � 1, the non-dimensional governing
equations and the associated boundary conditions can be
expressed as
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ur ¼ uz ¼ h ¼ 0. ð17Þ
At free surface (r = R � h)

ðr�1urÞr ¼ Oða2Þ; ð18Þ
p ¼ �2S � Re�5=3ð2CÞ1=3ða2hzz þ r�1Þ

þ af�2Re�1½ðr�2ur � r�1urrÞhz
þ r�2uz � r�1urz�g � Nd � Re�2 � h2r þOða2Þ; ð19Þ

h ¼ 1; ð20Þ
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where the subscripts r, z, rr, zz and rz are used to represent
various partial derivatives of the associated underlying
variables.

Since the modes of long-wavelength that gives the small-
est wave number are most likely to induce flow instability
for the film flow [12,13], the dimensionless wave number
of the long-wavelength mode, a, can then be chosen as
the perturbation parameter for variable expansion. The
stream function and flow pressure can be perturbed and
represented as

u ¼ u0 þ au1 þOða2Þ; p ¼ p0 þ ap1 þOða2Þ;
h ¼ h0 þ ah1 þOða2Þ. ð22Þ

The flow conditions of the thin film can be obtained by
inserting the above expressions into Eqs. (14)–(20) and then
solving systematically the resulting equations. In practical
application, the non-dimensional surface tension S is a large
value and the term a2S is taken to be of order one
[9,10,14,15]. Further, in the analysis, Re ’ O(1) and
Pe ’ O(1). By collecting all terms of zeroth order a0 in the
governing equations and boundary conditions, the solu-
tions of zeroth order equations can now be expressed as
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where q = R � h, Q = q/R.
Similarly, after collecting all terms of first order a1 in the

governing equations and boundary conditions, the solu-
tions of first order equations can now be obtained and
expressed in the Appendix A.
The zeroth and the first order solutions are inserted
into the dimensionless free surface kinematic equation
(21) to yield the following generalized nonlinear kinematic
equation

ht þ X ðhÞ þ AðhÞhz þ BðhÞhzz þ CðhÞhzzzz þ DðhÞh2z
þ EðhÞhzhzzz ¼ 0; ð26Þ

where X(h), A(h), B(h), C(h), D(h) and E(h) are given in
Appendix B.
3. Stability analysis

As the variation of the film thickness of the base flow is
found to be very small for jahxj � 1 using an analysis based
on Nusselt assumption, the dimensionless film thickness
when expressed in perturbed state can be given as

hðt; zÞ ¼ 1þ gðt; zÞ; ð27Þ
where g(t,z) is a perturbed quantity to the stationary film
thickness. The approximation jahxj � 1 give the qualitative
results for the constant film thickness assumption at the
zero order. It is important to note that this constant film
thickness approximations with long wave perturbations
are reasonable approximations only for certain segments
of weakly condensing flow. As has been pointed out by
Joo et al. [16] and Burelbach et al. [17], the condensate films
do not allow a steady uniform basic state. If the basic state
is uniform, it must be time-dependent. However, the anal-
ysis in this study is based on the locally valid unsteady
equation under the assumption of steady state undisturbed
liquid film which can simplify the analysis and computa-
tions. By inserting the Eq. (27) into Eq. (26) and collecting
all terms up to the order of g3, the evolution equation of g
becomes
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The values of X, A, B, C, D, and E and their derivatives are
all evaluated at the dimensionless height, h = 1, of the film
flow.
3.1. Linear stability analysis

As the nonlinear terms in Eq. (28) are neglected, the lin-
earized equation is obtained as

gt þ X 0gþ Agz þ Bgzz þ Cgzzzz ¼ 0. ð29Þ

The normal mode analysis method can be performed by
assuming that

g ¼ a exp½iðz� dtÞ� þ c.c.; ð30Þ
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where a is the perturbation amplitude, and c.c. is the com-
plex conjugate counterpart. The complex wave celerity, d,
is given as

d ¼ dr þ idi ¼ Aþ iðB� C � X 0Þ; ð31Þ
where dr is the linear wave speed, and di is the linear growth
rate of the wave amplitudes. The flow is in linearly unstable
supercritical condition if di > 0, and is in linearly stable
sub-critical condition if di < 0.

3.2. Nonlinear stability analysis

By the method of multiple scales [18], the Ginzburg–
Landau equation [19] can be derived following the same
procedure as Chen et al. [1]
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1

2
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The overhead bar appearing in equation (32) stands for the
complex conjugate of the same variable. In order for a
supercritical stable region to exist in the linearly unstable
region (di > 0), the condition is given as E1 > 0. The associ-
ated wave amplitude ea0 in the supercritical stable region is
obtained as

ea0 ¼
ffiffiffiffiffi
di

E1

r
. ð37Þ

The nonlinear wave speed is given by

Ncr ¼ dr þ di
F 1

E1

� �
. ð38Þ

The Ginzburg–Landau equation can be used to character-
ize various flow states and the results are customarily sum-
marized and presented as Landau table [20].

4. Results and discussion

In order to study the influence of rotation and the radius
of cylinder on the stability of the film flow, physical para-
meters selected for this study include (1) Reynolds number
Re: 0–15, (2) wave numbers a: 0–0.12, (3) Rotation number
Ro: 0, 0.1, 0.2 and (4) cylinder radius R: 10, 20, 50, 100. For
the purpose of comparison with the literature [5,21], the
values of dimensional quantities are taken as, a constant
dimensionless surface tension S = 6173.5 [14,15], Jokob
number, n = 0.0872; Prandtl number, Pr = 2.62, density
ratio, b = 0.000611, and Nd = 1.812. The temperature at
the interface is taken as T �

s ¼ 373 K and the temperature
difference between the wall and the interface as DT � ¼
T �

s � T �
w ¼ 47 K. The above physical quantities are taken

from the condensate water at the temperature of T �
w þ

DT=3 except for surface tension at 373 K. The pressure
condition is at 1 atm.

4.1. Linear stability analysis

By setting di = 0 in the linear stability analysis, the neu-
tral stability curve can be easily determined from Eq. (31).
The a–Re plane is divided into two different characteristic
regions by the neutral stability curve. One is the linearly
stable region where small disturbances decay with time
and the other is the linearly unstable region where small
perturbations grow as time increases. Fig. 2(a) shows the
neutral stability curves of a condensate film falling with
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various values of Rotation number. The results indicate
that the area of linearly stable region (di < 0) enlarges as
the rotating speed increases. Fig. 2(b) shows the neutral
stability curves of a stationary (Ro = 0) vertical cylinder
with different values radii. The results indicate that the area
of linearly unstable region (di > 0) becomes larger for a
decreasing R. Namely; a cylinder with smaller radius in-
duces the flow instability condition. The results indicate
that the area of linearly stable region (di < 0) enlarges sig-
nificantly by the existence of rotation motion. The tempo-
ral growth rate of the film flow is also computed by using
Eq. (31). Fig. 3(a) and (b) shows the temporal film growth
rate of a condensate film at Ro = 0.1, 0.2 and Ro = 0. It is
interesting to note that temporal film growth rate decreases
as the value of Ro increases and Re decreases. Further-
more, it is found that both the wave number of neutral
mode and the maximum temporal film growth rate de-
crease as the value of Ro increases. Fig. 3(c) and (d) show
the temporal film growth rate in rotating case of which
Rotation number is equal to 0.1 at R = 10, 20, 50 and
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Fig. 3. Amplitude growth rate of disturbed waves in condensate flows for vario
values at Re = 10, Ro = 0.1; (d) R values at a = 0.06, Ro = 0.1.
100. It is noted that temporal film growth rate decreases
as the value of R increases. That is, the larger the value
of radius R is, the higher the stability of a liquid film.

4.2. Nonlinear stability analysis

As the perturbed wave grows to finite amplitude, the lin-
ear stability theory is no longer valid for accurate predic-
tion of flow behavior. The nonlinear stability analysis is
used here to study the effect of finite amplitude distur-
bances on the change of stability behaviors in the linearly
stable region. For example, by using the same nonlinear
flow stability, one can characterize the flow behaviors that
subsequent nonlinear evolution of disturbances in the line-
arly unstable region may be redeveloped to a new equilib-
rium state of finite amplitudes (i.e. supercritical stability) or
become unstable. If E1 in Eq. (35) is a negative value, the
amplitude of disturbed waves in the linearly stable region
is possible to develop to a unstable state, even though the
prediction obtained by linear analysis always gives stable
(d)
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result. The nonlinear neutral stability curves can be ob-
tained by simultaneously setting both di = 0 for Eq. (31)
and E1 = 0 for Eq. (35). The hatched areas in Fig. 4(a)–
(d) reveals that various conditions for the sub-critical insta-
bility (di < 0,E1 < 0), the sub-critical stability (di < 0,
E1 > 0), the supercritical stability (di > 0,E1 > 0), and the
explosive supercritical instability (di > 0,E1 < 0) are possi-
bly to occur for different rotating speed.

Fig. 4(a)–(c) show that the neutral stability curves of
di = 0 and E1 = 0 are shifted downward as the value of
Ro increases. Therefore, the area of shaded sub-critical
instability region (di < 0,E1 < 0) increases and the area of
shaded supercritical instability region (di > 0,E1 < 0) de-
creases as the value of Ro increases. The area of supercrit-
ical stability region (di > 0,E1 > 0) decreases and the area
of sub-critical stability region (di < 0,E1 > 0) increase as
the values of Ro increase. Fig. 4(b) and (d) show that the
neutral stability curves of di = 0 and E1 = 0 are shifted
upward as the value of R decreases. Therefore, the area
of shaded sub-critical instability region increases and the
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Fig. 4. Neutral stability curve of condensate film flows for (a) Ro = 0, R =
area of shaded supercritical instability region decreases as
the value of R increases. The area of supercritical stability
region increases and the area of sub-critical stability region
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Fig. 5(a) shows the threshold amplitude in sub-critical
unstable region for various wave numbers with different
Ro values at Re = 10 and R = 20. The results indicate that
the threshold amplitude ea0 becomes larger as the value of
rotating parameter Ro increases. Fig. 5(b) shows the
threshold amplitude in sub-critical unstable region for var-
ious wave numbers with different values of radius R at
Re = 10 and Ro = 0.1. The results indicate that the thresh-
old amplitude ea0 becomes smaller as the value of radius R
decreases. In such situations, the condensate film which
holds the higher threshold amplitude value becomes more
stable than that holds smaller one.

In the linearly unstable region, the linear amplification
rate is positive, while the nonlinear amplification rate is
negative. Therefore, a linear infinitesimal disturbance in
the unstable region, instead of becoming infinite, will reach
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finite equilibrium amplitude as given in Eq. (32). Fig. 6
shows the threshold amplitude in the supercritical stable re-
gion for various wave numbers under different values of
rotating parameter Ro at Re = 10 and R = 20. It is found
that the increase of Ro will lower the threshold amplitude,
and the flow become comparatively stable.

The wave speed of Eq. (31) predicted by the linear the-
ory is a constant value for all wave number and rotating
parameter Ro. However, the wave speed of Eq. (38) pre-
dicted by using nonlinear theory is no longer a constant.
It is actually a function of wave number, Reynolds number,
Rotation number, and the radius of cylinder. Fig. 7 shows
the nonlinear wave speed in the supercritical region for var-
ious perturbed wave numbers and different Rotation num-
bers Ro = 0, 0.1, 0.2 at Re = 10 and R = 20. It is found
that the nonlinear wave speed increases as the value of
Ro decreases.

5. Conclusions

The stability of a thin condensate film flowing down the
inner surface of a rotating vertical cylinder is thoroughly
investigated by using the method of long wave perturba-
tion. The generalized nonlinear kinematic equation of the
film flow at the interface of free surface is derived and
numerically estimated to characterize the behaviors of flow
stability under different Rotation number and radius of cyl-
inder. Based on the results of numerical modeling, three
conclusions can be made:

1. The results of linear stability analysis indicate that the
area of linearly stable region becomes larger for an
increasing Ro and R value. It is also noted that the tem-
poral growth rate of film is reduced with a increasing Ro

and R value. In other words, the degree of stability is
enhanced if the flow is perturbed by waves with a higher
rotation speed, and a greater radius of the cylinder.
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2. In the nonlinear stability analysis, it is noted that the
area of shaded sub-critical instability region and sub-
critical stability region are increased as the value of Ro
and R increase. On the other hand, the area of shaded
supercritical instability region and supercritical stability
region decrease with an increasing Ro and R. It is also
shown that the threshold amplitude ea0 in the sub-criti-
cal instability region increases as the value of Ro

increases. Both the threshold amplitude and nonlinear
wave speed in the supercritical stability region decrease
with an increasing Ro value.

3. In this research, the rotation motion contributes the
force which sticks the condensate film to the inner wall
of a vertical rotating cylinder. On the contrary, if the
condensate film is on the outer surface of a vertical
rotating cylinder, the film will be detached from the sur-
face due to the centrifugal force [1]. From these two
researches, the rotation effect make the condensate film
more stable when it is in the inner surface of cylinder,
but the rotation effect make the film less stable when it
is on the outer surface of cylinder.
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Appendix A. First order solution
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Appendix B. Generalized nonlinear kinematic equation
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